Equilibrium and Thermodynamics Worksheet CHEM 212

1. Write a generalized equilibrium expression for the following reaction.

$$aA + bB \Leftrightarrow cC + dD$$

2. State the units for each phase below necessary for the equilibrium expression. If a phase does not participate, explain why.

Phase	units
Gas	f or pressin
Aqueous	Molarity
Liquid	. 0
solid	0

liquido ?	W '	solids	dont	participate	in
equilibri					

3. Circle each of the following species that do not participate in the equilibrium expression.

(H ₂ O	<u> </u>
BaS	04(5)

CO₃²-(aq) HCO3. (ad) $\chi_2(CO_3)_{3(s)}$

 $CO_{2(g)}$

What do the circled answers have in common?

solid or liquid

Manipulating Equilibrium constants

Forward and reverse reactions

 $aA + bB \Leftrightarrow cC + dD$ and $cC + dD \Leftrightarrow aA + bB$

Write each equilibrium expression for each equation.

What is the relationship between equilibrium constants (Ks)?

Adding reactions

$$aA + bB \Leftrightarrow gC + dD \quad K_1$$
 $eC + eE \Leftrightarrow fF \quad K_2$
 $aA + bB + eE \Rightarrow dD \quad K_f$

Write the final reaction and equilibrium expression for each reaction.

$$A + bB \Leftrightarrow cC + dD \quad K_1 \qquad K_1 = \frac{[C]^2 \quad [D]^4}{[A]^2 \quad [B]^5} \qquad K_2 = \frac{[F]^4}{[A]^2 \quad [B]^5} \qquad K_3 = \frac{[F]^4}{[A]^2 \quad [B]^5} \qquad K_4 = \frac{[A]^2 \quad [B]^5}{[A]^2 \quad [B]^5} \qquad K_5 = \frac{[A]^4}{[A]^2 \quad [B]^5} \qquad K_6 = \frac{[A]^4}{[A]^2} \qquad K_6 = \frac{[A]^4}{[A]^2} \qquad K_6 = \frac{[A]^4}{[A]^2} \qquad K_6 = \frac{[A]^4}{[A]^4} \qquad K_6 = \frac{[A]^4}{[A]^$$

What is the relationship between the Ks?

Thermodynamics

	Define the follow	is favorable:					
	enthalpy) \	\C\ -4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	made non	Come bonds made/		
	change of	Now M	1118 00	1 Ches 10.1	from bonds made/		
	BODECT C	wing in	C~ .	,			
+	DH, heat	AH, heat absorbed, endothermic, not favored entropy - AH, heat released, exothermic, favored					
	entropy	AH, heat	relioned	exother	Truck I factor ca		
	a macini	ill of c	hisorder.	IN Crease	a evalue of mass		
	disorder	has in	reased,	which i	o favorable.		
	Gibb's free energ	gy	4	La ma ita	of a reaction.		
	A mean	we of	rue spen	Harmer. ?	of a reaction.		
-	- AG to 1	Lavovalse	, in rive	will pro	acied sponteneously.		
	·	`	•	•	_		
	Spontaneous?						
	Spontanaity is p		$\Delta G_r = \Delta H_r - T\Delta S_r$				
1				d be spontaneous	1		
	ΔH _r	ΔS _r	ΔG _r	Spontaneous?	Caroced		
	+	-	4	1			
	•	+	-	us! m	est favorable		
	•	-	not clean	1 CUATOLUE	Du favores		
,	What is the equa	What is the equation relating the equilibrium constant and Free energy					
	V =	e 46	~ . VC	=-RT Ink	R=8,314 J/K·m		
	100		50		T = k		
	What is Le Châtl	ier's principle in v	words?		DG = J/mol		
,	What is Le Châtlier's principle in words? Le Châtlier's principle means that it you push on						
ax	either the reactants or products side of an rix,						
	The car will accord and the transfer						
	The rax will proceed away from that pressure When can heat be considered as a reactant or product?						
	when a reaction is endothermic, heat is a reactant						
	WHERE O	c veses in	, , , , ,	factors	•		
when exothermic, heat is a product.							
		tion is a reaction		milihrium cituatio	ons to determine the direction		
		i quotient and can ion will be sponta			713 to determine the un conon		
		··· · · · · · · · · · · · · · · ·		1			

Equilibrium is a lowest energy state predicted using thermodynamic data. However, it does not say if a reaction will happen or how fast. If a reaction will really happen also depends on kinetics, which is not discussed in this course.