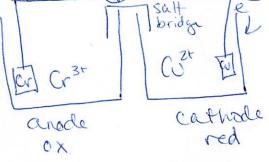
| CHEM 21 | 2; | Fall | 2014 |
|---------|----|------|------|
| Exam 3  |    |      |      |

| Name | Key |  |
|------|-----|--|
| 1    |     |  |

PART 1: Do all questions 1-3.

PART 2: Do 2 of the 34 questions. It is essential YOU indicate the problems you want graded. Otherwise, I will grade the first two with writing.


$$[C_{3}^{2+}] = 0.02M$$
  
 $[C_{3}^{3+}] = 0.07M$ 

Write CLEARLY and show your work (full points will not be awarded for the correct answers with inadequate work shown).

20 2. (25 pts) Given a voltaic cell made from the following components:

$$Cu^{2+} + 2e^{-} \rightarrow Cu_{(s)} E^{0} = 0.34 V$$
  
 $Cr^{3+} + 3e^{-} \rightarrow Cr_{(s)} E^{0} = 0.74 V$ 

the picture.



b. (3) Write the line notation for the cell

c. (2) Write each of the balanced half reactions in the appropriate direction with E°.

d. (2) Write the balanced equation and calculate E°cell.

$$3C_{5}^{2+} + 2C_{5}^{\circ} \stackrel{?}{=} 3C_{5}^{\circ} + 2C_{5}^{3+} = 1.08V$$

e. (5) Calculate the cell potential for the following conditions:  $[Fe^{2+}] = 0.31M \qquad [Fe^{3+}] = 0.02M \qquad [Ce^{3+}] = 0.45M \qquad [Ce^{3+}] = 0.02M \qquad [Ce^{3+}] = 0.02M$ 

$$E_{\text{wf}} 1.08 \text{ V} - 0.059116 \text{ V} \log \frac{(0.07)^2}{(0.02)^3}, 8 \times 10^{-6}$$

(2) What voltage will be produced by this cell at equilibrium?

(3) Calculate the equilibrium constant for this cell.

$$k = \frac{E^{\circ} n}{0.5916} = 10 \frac{1.081.6}{0.5916} = 10$$

|       | ots) Draw a Jab<br>iative decay, i |        | •      |  |
|-------|------------------------------------|--------|--------|--|
|       | See                                | igune  | 17 -15 |  |
| shape | 2.4 mc                             | So, Si | T,     |  |
| terms | 6                                  |        |        |  |
| freib | ie 1                               |        |        |  |

a. (3 pts) Calculate the energy and frequency of a 560 nm photon.  

$$E = hV = \frac{hC}{x} = \frac{3 \times 10^8 \text{ m/s}}{500 \times 10^{-9} \text{ m}} = 5.35 \times 10^{14} \text{/s}$$

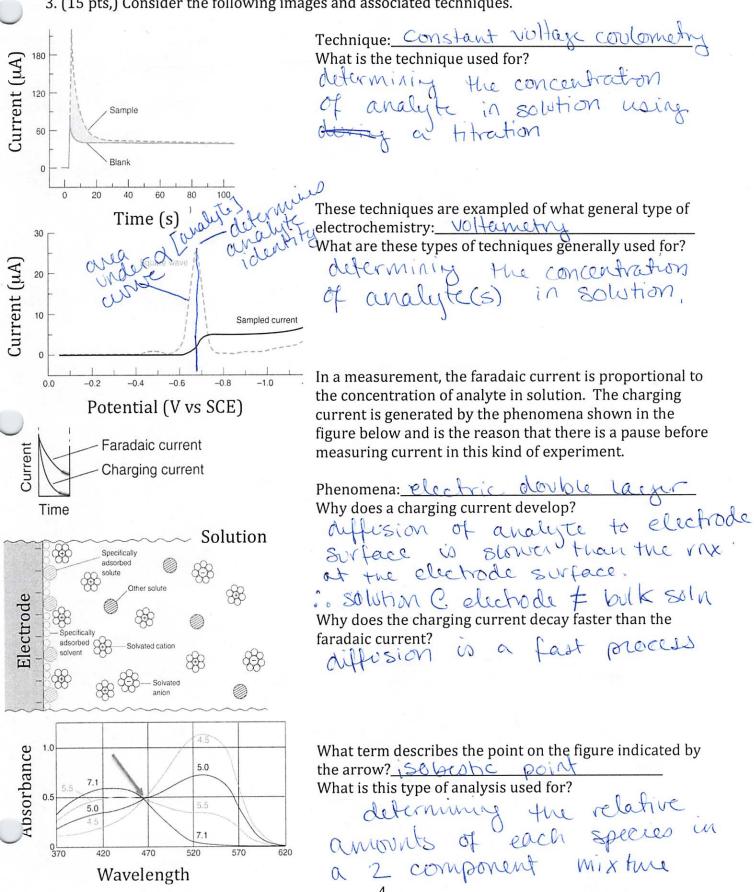
$$E = 3.55 \times 10^{-19} \text{ y} = \frac{3 \times 10^8 \text{ m/s}}{500 \times 10^{-9} \text{ m}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ m}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ m}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ m}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ m}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ m}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ m}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ m}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ m}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ m}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ m}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ m}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ m}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ m}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ m}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ m}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ m}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ m}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ m}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ m}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ m}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ m}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ m}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ m}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ m}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ m}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ y}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ y}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ y}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ y}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ y}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ y}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ y}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ y}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ y}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ y}} = \frac{3.55 \times 10^{-19} \text{ y}}{500 \times 10^{-9} \text{ y}} = \frac{3.55 \times 10^{-9} \text{ y}}{500 \times 10^{-9} \text{ y}} = \frac{3.55 \times 10^{-9} \text{ y}}{500 \times 10^{-9} \text{ y}}$$

c. (3 pts) Why does fluorescence occur at lower wavelengths than the absorbed excitation energy? because of energy loss due to nonradiative decay

d. (3 pts) Consider a UV-Vis absorption experiment. If A=2, what is T? If  $Q = 3x10^4$ , what is the concentration of analyte in the solution?

$$A = -\log T$$
 $T = 0.01$ 

% T = 1 %


$$A = QbC$$
 $C = \frac{A}{Gab} = \frac{2}{3\times10^4 \cdot 1} = 6.7\times10^{-5} \text{ M}$ 

fluorescence, phosphorescence,

SA: 2pt ea 10 pts

friebil

Gillin : 1 pt ea 4 pts 3. (15 pts,) Consider the following images and associated techniques.

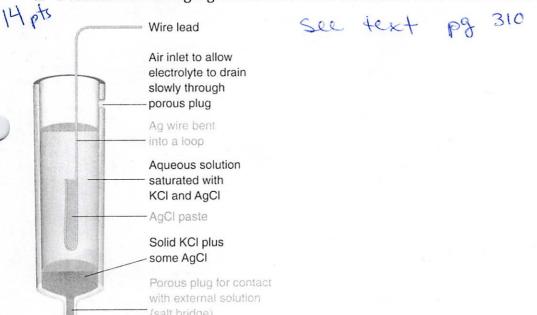


## --PART 2—

Do 2 of the following 4 questions. It is essential YOU indicate on the first page of the exam the problems you want graded. Otherwise, I will grade the first two with writing.

4. (20 pts) Consider an electrochemical cell:

a. What is the purpose of the indicator electrode? to measure the potential in an a solution of interest.


2 b. What are two of the most common materials for inert electrodes to be made from?

C, Pt, Au

c. What is the purpose of a reference electrode?

to maintain a constant potential

d. Describe how an Ag-AgCl reference electrode works with reference to the figure below



5. Consider the following instrument components.

a. (10 pts) Diagram and label a monochromator. Briefly state the function of each component in the diagram.

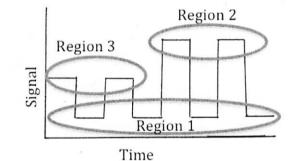
See spectroscopy worksheet

b. (10 pts) Diagram and label a PMT. Briefly state the function of each component in the diagram.

See spectroscopy worksheet

6. (20 pts) Consider the suite of atomic spectrometers

a. (12 pts) Draw a box diagram and label a flame Atomic Absorption Spectrophotometer. Briefly explain the role of each component. Suggest what components might be (e.g., detector= PMT) if these were featured in class or videos.


Chopper

growthy is

b. (3 pts) What is the purpose of a monochromator in a Flame AA instrument?

to reduce stray ught contributed by the flame

(2 pts) Consider the output signal of a Flame AA. What component of the instrument gives rise to the square wave shape? the chapper



d. (3 pts) Explain the signal contributing to the signal in each region.

Region 1: flame only

solution + HCL + flame Region 2: blank

Region 3: Sample + HCL + flame

component. Suggest what components might be (e.g., detector= PMT) if these were featured in class or videos. a. Atomic emission spectrophotometer 4 flame fuel-generally acetylene oxidant-generally air. b. Florimeter (used for molecular fluorescence) ward PMT c. Single beam UV-Visible spectrophotometer Source -> mono turgoten filanent deuterism arc

7. (20 pts) Diagram and label the following instruments. Briefly explain the role of each